martes, 18 de febrero de 2014

FIBRAS OBTENIDAS POR POLICONDENSACIÓN

Fibras de poliéster
Estas fibras, junto con las acrílicas y las de poliamida, constituyen las fibras sintéticas más importantes de la industria textil.
El material base, los poliésteres, son químicamente poli­condensados termoplásticos lineales formados a partir de un ácido dicarboxílico y un dialcohol. En estos productos, los grupos éster están incorporados como puentes de enlace en las cadenas macromoleculares; en cambio, los ésteres de la celulosa no se consideran como poliésteres, ya que en ellos los grupos éster se encuentran en las cadenas laterales.
El mecanismo del proceso de formación de un poliéster lineal consiste en la condensación reiterativa de los monómeros bifuncionales.
El éster formado en esta primera etapa contiene todavía grupos hidroxilos y carboxilos terminales libres, que pueden reaccionar con nuevas moléculas de diácido y dialcohol, res­pectivamente.
La cantidad de agua separada es una medida de la cuantía de la polirreacción; por ejemplo, cuando el grado de policondensación alcance el valor n =500, el número de moles de agua formada por mol de poliéster será de 999. Estas reacciones de esterificación son reacciones en equilibrio, de modo que para conseguir altos grados de condensación es necesario eliminar del sistema reaccionante el agua que acompaña a la formación del poliéster, a fin de que el equilibrio se desplace hacia el lado de los condensados macromoleculares.
Los poliésteres lineales fueron obtenidos por vez primera por Carothers en 1932 a partir de ácidos dicarboxílicos alifáticos y dioles, resultando productos de escasa aplicación técnica, pues por su bajo punto de fusión e hidrofilia eran fácilmente saponificables.
Los principales poliésteres lineales para fines textiles son los politereltalatos, que se obtienen por transesterificación y condensación del dimetiléster del ácido tereftálico con dietil­englicol. No se parte directamente del ácido tereftálico, pues por su insolubilidad resulta difícil la esterificación con glicol. Se obtiene primero el dimetiléster tereftálico, y luego se efectua la transesterificación con exceso de glicol, a 190-200 ºC, en presencia de catalizadores como óxido de plomo o de magnesio.
Se separa el metanol formado por destilación y con el poliéster fundido se efectúa una hilatura por extrusión. Los hilos son sometidos a un estirado en frío a seis-diez veces su longitud para aumentar su solidez y luego a una termofijación con objeto de eliminar las tensiones producidas en la hilatura y estiraje y evitar así la contracción posterior de la fibra.
Estas fibras de polietilentereftalato son del tipo Terylene, al cual pertenecen también las diversas fibras textiles cono­cidas bajo las designaciones comerciales de Diolen, Trevira, Dacron, Fortel, Teteron, Tentai, Wistel, Tergal, Terlenka, Enkalene, Teriber y otras más
La distinta constitución química lleva consigo el que ambos tipos de fibras de poliéster tengan propiedades y comporta­miento distintos.
Las fibras de poliéster son elásticas y muy resistentes a la tracción y ai roce, acercándose a los valores mecánicos de las fibras de poliamida. Son muy estables a la luz, a los ácidos, oxidantes y disolventes, pero no demasiado frente a las bases, las cuales, concentradas y en caliente, actúan saponificando el poliéster. Absorben menos humedad que las fibras acrílicas y poliamídicas, pero algo más que las vinílicas y olefínicas. Son, además, fáciles de lavar y secan rápidamente.
Fibras de poliamidas
Se pueden obtener por dos procedimientos diferentes, que conducen a dos tipos distintos de poliamidas. Uno de ellos consiste en la policondensación de diaminas con ácidos dicarboxílicos que contengan ambos, por lo menos, cuatro gru­pos metileno en sus moléculas; el otro método de obtención, se basa en la autopoliconden­sación de aminoicidos (o sus lactamas) de por lo menos cinco metilenos. Si el número de grupos metileno es menor, no se produce condensación suficiente para dar productos de importancia textil.
De todas las fibras sintéticas, las poliamidas son las que más se asemejan constitucionalmente a las fibras proteíni­cas naturales, como la lana y la seda. Como en éstas, las cadenas lineales de las poliamidas técnicas están formadas por enlaces peptídicos o amidínicos, que justifican sus propiedades especiales, como su insolubilidad, elevado punto de fusión, resistencia mecánica, etc., ya que pueden saturarse mutuamente por formación de puentes de hidrógeno.
La formación de tales puentes de hidrógeno se puede difi­cultar o impedir, modificando la regularidad estruc­tural de la poliamida. Con ello aumenta la solubilidad de la poliamina y disminuye su punto de fusión.
A diferencia de otras fibras termoplásticas, las poliamidas no tienen una zona de reblandecimiento, sino un punto de fusión bastante definido.
Son las fibras de mayor re­sistencia a la tracción, al desgarre, a la abrasión y a la flexión. Al igual que las fibras de poliéster, tienen la característica de poderse estirar en frio a varias veces su longitud inicial, adqui­riendo entonces gran sulidez y elasticidad. Característico de las poliamidas es también su capacidad de absorcion de agua o humedad.
Nombres comerciales de fibras de poliamida 6,6 son: Nylon, Astron, Quiana, Chemstrand, CTA, Fabeinyl, Nomex, Nailon, Nylfrance, Promilan, Nylcolor, Wellon y Forlio.

Nombres comerciales de fibras de poliamida 6 son Per­Ion, Amilan, Celon, Lilion, Velion, Helion, Frilon, Tecron, Carbyl, Trinyl, Nurel, Caprolan, Enkalon, Dederon, Dorvivan, Toray, Dayan, Nylhair, etc.

No hay comentarios:

Publicar un comentario